Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers.

نویسندگان

  • Pascale Barbier
  • Audrey Dorléans
  • Francois Devred
  • Laura Sanz
  • Diane Allegro
  • Carlos Alfonso
  • Marcel Knossow
  • Vincent Peyrot
  • Jose M Andreu
چکیده

Tubulin is able to switch between a straight microtubule-like structure and a curved structure in complex with the stathmin-like domain of the RB3 protein (T(2)RB3). GTP hydrolysis following microtubule assembly induces protofilament curvature and disassembly. The conformation of the labile tubulin heterodimers is unknown. One important question is whether free GDP-tubulin dimers are straightened by GTP binding or if GTP-tubulin is also curved and switches into a straight conformation upon assembly. We have obtained insight into the bending flexibility of tubulin by analyzing the interplay of tubulin-stathmin association with the binding of several small molecule inhibitors to the colchicine domain at the tubulin intradimer interface, combining structural and biochemical approaches. The crystal structures of T(2)RB3 complexes with the chiral R and S isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl-carbamate, show that their binding site overlaps with colchicine ring A and that both complexes have the same curvature as unliganded T(2)RB3. The binding of these ligands is incompatible with a straight tubulin structure in microtubules. Analytical ultracentrifugation and binding measurements show that tubulin-stathmin associations (T(2)RB3, T(2)Stath) and binding of ligands (R, S, TN-16, or the colchicine analogue MTC) are thermodynamically independent from one another, irrespective of tubulin being bound to GTP or GDP. The fact that the interfacial ligands bind equally well to tubulin dimers or stathmin complexes supports a bent conformation of the free tubulin dimers. It is tempting to speculate that stathmin evolved to recognize curved structures in unassembled and disassembling tubulin, thus regulating microtubule assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural rearrangements in tubulin following microtubule formation.

Microtubules are essential cytoskeletal structures that mediate several dynamic processes in a cell. To shed light on the structural processes relating to microtubule formation and dynamic instability, we investigated microtubules composed of 15 protofilaments using cryo-electron microscopy, helical image reconstruction and computational modelling. Analysis of the configuration of the alpha bet...

متن کامل

Identification of a Protein That Interacts with Tubulin Dimers and Increases the Catastrophe Rate of Microtubules

Using a polymerization inhibition assay, we have purified a small, heat stable protein that physically interacts with tubulin dimers and increases the catastrophe rate of microtubules. Sequence analysis identified this protein as oncoprotein 18 (Op18)/stathmin, a conserved phosphoprotein that is highly expressed in leukemia cells. Immunodepletion experiments in Xenopus egg extracts showed that ...

متن کامل

Nanobiomechanical Properties of Microtubules

Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...

متن کامل

Dynamic Simulation and Mechanical Properties of Microtubules

This work is conducted to obtain mechanical properties of microtubule. For this aim, interaction energy in alpha-beta, beta-alpha, alpha-alpha, and beta-beta dimers was calculated using the molecular dynamic simulation. Force-distance diagrams for these dimers were obtained using the relation between potential energy and force. Afterwards, instead of each tubulin, one sphere with 55 KDa weight ...

متن کامل

α-Synuclein regulates the partitioning between tubulin dimers and microtubules at neuronal growth cone

ARTICLE HISTORY Received 7 November 2016 Accepted 23 November 2016 ABSTRACT The partitioning between tubulin dimers and microtubules is fundamental for the regulation of several neuronal activities, from neuronal polarization and processes extension to growth cone remodelling. This phenomenon is modulated by several proteins, including the well-known microtubule destabilizer Stathmin. We recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 41  شماره 

صفحات  -

تاریخ انتشار 2010